A variance maximization criterion for active learning
نویسندگان
چکیده
Active learning aims to train a classifier as fast as possible with as few labels as possible. The core element in virtually any active learning strategy is the criterion that measures the usefulness of the unlabeled data based on which new points to be labeled are picked. We propose a novel approach which we refer to as maximizing variance for active learning or MVAL for short. MVAL measures the value of unlabeled instances by evaluating the rate of change of output variables caused by changes in the next sample to be queried and its potential labelling. In a sense, this criterion measures how unstable the classifier’s output is for the unlabeled data points under perturbations of the training data. MVAL maintains, what we refer to as, retraining information matrices to keep track of these output scores and exploits two kinds of variance to measure the informativeness and representativeness, respectively. By fusing these variances, MVAL is able to select the instances which are both informative and representative. We employ our technique both in combination with logistic regression and support vector machines and demonstrate that MVAL achieves state-of-the-art performance in experiments on a large number of standard benchmark datasets.
منابع مشابه
Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion
We introduce a new objective function for pool-based Bayesian active learning with probabilistic hypotheses. This objective function, called the policy Gibbs error, is the expected error rate of a random classifier drawn from the prior distribution on the examples adaptively selected by the active learning policy. Exact maximization of the policy Gibbs error is hard, so we propose a greedy stra...
متن کاملActive learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised learning addresses the problem of selecting right transcriptions for un-transcribed utterances, s...
متن کاملDynamic variance adaptation using differenced maximum mutual information
A conventional approach for noise robust automatic speech recognition consists of using a speech enhancement before recognition. However, speech enhancement cannot completely remove noise, thus a mismatch between the enhanced speech and the acoustic model inevitably remains. Uncertainty decoding approaches have been used to mitigate such a mismatch by accounting for the feature uncertainty duri...
متن کاملSemi-supervised and active learning with the probabilistic RBF classifier
The probabilistic RBF network (PRBF) is a special case of the RBF network and constitutes a generalization of the Gaussian mixture model. In this paper we propose a semi-supervised learning method for PRBF, using labeled and unlabeled observations concurrently, that is based on the expectation–maximization (EM) algorithm. Next we utilize this method in order to implement an incremental active l...
متن کاملActive Learning with the Probabilistic RBF Classifier
In this work we present an active learning methodology for training the probabilistic RBF (PRBF) network. It is a special case of the RBF network, and constitutes a generalization of the Gaussian mixture model. We propose an incremental method for semi-supervised learning based on the Expectation-Maximization (EM) algorithm. Then we present an active learning method that iteratively applies the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 78 شماره
صفحات -
تاریخ انتشار 2018